References

Breiman, Leo. “Random Forest.” Machine Learning 45, no. 1 (2001): 5–32. https://doi.org/10.1023/A:1010933404324.
Brunsdon, C., A. S. Fotheringham, and M. Charlton. “Geographically Weighted Summary Statistics - a Framework for Localised Exploratory Data Analysis.” Computers, Environment and Urban Systems 26, no. 6 (November 2002): 501–24. https://doi.org/10.1016/s0198-9715(01)00009-6.
Brunsdon, Chris. “Estimating Probability Surfaces for Geographical Point Data: An Adaptive Kernel Algorithm.” Computers & Geosciences 21, no. 7 (August 1995): 877–94. https://doi.org/10.1016/0098-3004(95)00020-9.
———. RPubs - GWSS - (7th Channel Network Conference),” July 2019. https://rpubs.com/chrisbrunsdon/503649.
Kohonen, Teuvo. “Self-Organized Formation of Topologically Correct Feature Maps.” Biological Cybernetics 43, no. 1 (January 1, 1982): 59–69. https://doi.org/10.1007/BF00337288.
Lu, Binbin, Paul Harris, Martin Charlton, and Chris Brunsdon. “The GWmodel r Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models.” Geo-Spatial Information Science 17, no. 2 (April 3, 2014): 85–101. https://doi.org/10.1080/10095020.2014.917453.
Marj Tonini, Axelle Bersier, Jingyan Yu, and Francois Bavaud. “An Unsupervised Learning Approach to Explore Geodemographic Clusters in Switzerland.” In ECTQG 2023 Proceedings. Braga, Portugal, 2023. https://ucpages.uc.pt/site/assets/files/1249198/ectqg_2023_proceedings_final.pdf.
Micheletti, Natan, Marj Tonini, and Stuart N. Lane. “Geomorphological Activity at a Rock Glacier Front Detected with a 3D Density-Based Clustering Algorithm.” Geomorphology 278 (February 2017): 287–97. https://doi.org/10.1016/j.geomorph.2016.11.016.
Nakaya, Tomoki, and Keiji Yano. “Visualising Crime Clusters in a Space-Time Cube: An Exploratory Data-Analysis Approach Using Space-Time Kernel Density Estimation and Scan Statistics.” Transactions in GIS 14, no. 3 (2010): 223–39. https://doi.org/10.1111/j.1467-9671.2010.01194.x.
Spielman, Seth E., and Jean-Claude Thill. “Social Area Analysis, Data Mining, and GIS.” Computers, Environment and Urban Systems 32, no. 2 (March 1, 2008): 110–22. https://doi.org/10.1016/j.compenvurbsys.2007.11.004.
Tonini, Marj, Mirko D’Andrea, Guido Biondi, Silvia Degli Esposti, Andrea Trucchia, and Paolo Fiorucci. “A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy.” Geosciences 10, no. 3 (March 2020): 105. https://doi.org/10.3390/geosciences10030105.
Tonini, Marj, Mário Gonzalez Pereira, Joana Parente, and Carmen Vega Orozco. “Evolution of Forest Fires in Portugal: From Spatio-Temporal Point Events to Smoothed Density Maps.” Natural Hazards 85, no. 3 (February 1, 2017): 1489–1510. https://doi.org/10.1007/s11069-016-2637-x.
Trucchia, Andrea, Hamed Izadgoshasb, Sara Isnardi, Paolo Fiorucci, and Marj Tonini. “Machine-Learning Applications in Geosciences: Comparison of Different Algorithms and Vegetation Classes’ Importance Ranking in Wildfire Susceptibility.” Geosciences 12, no. 11 (November 2022): 424. https://doi.org/10.3390/geosciences12110424.